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Abstract. Under sustainable development goals, multi-objective optimization has been highly notified and
supported rational and flexible decision making. In the case of car industries, energy conservation and mass-
customization are becoming major interests to meet such trend under global competition. To pursue this goal in a
lean and agile manner, various simulation and optimization techniques are applied to real-world car design. To
promote such development, one of the Japanese car companies recently released a bi-objective bench-mark problem
on multiple car structure design. Since it is a large optimization problem that requires us to apply computationally
tough method, in this paper, we have proposed a unique procedure incorporated with our multi-objective
optimization method known as MOON? and a new method named downsizing NSGA-11. Moreover, to enhance its
usefulness in practical engineering tasks, we engage in a post-optimal analysis that tries to comprehensively re-
consider the prior result before the final decision. In numerical experiments, we have shown the proposed procedure
can efficiently solve the original problem and move adaptively on the post-optimal analysis in the same framework.
Finally, the advantage is compared with the other studies and the propose idea is shown useful toward qualified and

manifold decision making.
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1. INTRODUCTION

As represented by energy and/or environmental issues,
modern technologies are facing with various difficult
problems incidental to sustainable development goals. To
cope with such situation, multi-objective optimization has
been highly notified and supported rational and flexible
decision making. In the case of car industries, energy
conservation and mass-customization are considered as

major interests to meet such trend under global competition.

To pursue this goal in a lean and agile manner, various
simulation and optimization techniques have been applied
to real-world car design associated with the concept of
V&YV (Verification & Validation, Shiratori et al., 2013). To
promote such development, one of the Japanese car
companies recently released a bench-mark problem on
multiple car structure design in public through an academic
society. It is a large complicated bi-objective optimization
problem that requires us to provide a certain
computationally efficient method.

Hence, in this paper, we propose a unique procedure
incorporated with our multi-objective optimization method
known as MOON? (Shimizu & Kawada, 2002) and a new

method named downsizing NSGA-II (Yoo & Shimizu,
2018). Moreover, to enhance its usefulness in practical
engineering tasks, we encourage to carry out post-optimal
analysis (Shimizu, Yoo & Sakaguchi, 2016) that tries to
comprehensively re-consider the prior solution against
various uncertainties before the final decision. Through
numerical experiments, we have shown the proposed idea
can derive the prior solution efficiently and move
adaptively on the post-optimal analysis in the same
framework. In the numerical experiment, the advantage is
shown through comparison with the other studies. From all
of these, we claim the propose idea is definitely useful
toward qualified and manifold decision making.

The rest of this section is organized as follows. In
Section 2, we describe the framework of the proposed
approach for practical decision making. Section 3 concerns
with the benchmark problem and discuss on the
effectiveness of the proposed approach. Some conclusions
are given in Section 4.

2. PROPOSED APPROACH FOR PRACTICAL
DECISION MAKING



2.1 Framework of the Proposed Idea

Generally speaking, it is quite inefficient for practical
decision making just to solve the optimization problem.
Actually, we need to totally engage in several processes
accompanying with it. Actually, we can name value system
design and problem formulation as the prior processes
while post-optimal analysis as the post process. Moreover,
it is essential to notice uncertain factors and/or errors
encountered in each process. A framework of such idea is
shown in Fig. 1 by using boxes (processes) and arrows
(troublesome factors). Thereat, the troublesome factors
from the upper side represent the universal one regardless
of situations while those from the lower side dependent
one. For example, subjective value judgement of decision
maker (DM) is likely unstable and system parameters in
mathematical model are substantially  uncertain.
Computational errors are inevitable when the algorithm is
running. On the other hand, value function may
occasionally be irrelevant or there happens to miss some

Subjective evaluation — Uncertain parameter

Value system Problem |
design formulation

Execution error

ulti-objective Post-optimal
optimization analysis

necessary objectives or oppositely to add extra ones. It is
usual to approximate non-linear model as linear one for
simplicity. We cannot completely remove some gaps
between the reality and its regression or response surface
model. Moreover, unsuitable optimization method might be
applied to the problem under concern and DM would
response inconsistently on his/her preference in multi-
objective optimization. Inadequate candidates could be
selected at the stage of final decision or certain changes in
decision environment happen to occur after the
optimization.

From all of those, in practice, noting the uncertainties
and errors, we should cope with every process carefully and
not stick to the centered optimization process. In particular,
the post-optimal analysis becomes extremely important
since it has a possibility to compensate and/or dismiss
every defect referring to the uncertainties of the foregoing
processes. In so far studies, however, such idea has not
been discussed deeply.
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Fig.1 Essential processes for practical optimization and uncertain factors involved in its framework.

2.2 Multi-objective Optimization by Down Sizing
NSGA-II Incorporated into MOON?

In general, multi-objective optimization problem
(MOP) is described as follows.

(1) Min f(x)={f(x),..., fy (X)}
9i(x) <0, (i—l,...,ml)}

subjectto x € X =4 x| .
hi(x)=0, (i=1,..,m2)

where X denotes a decision variable vector; X, is a feasible
region; and f is an objective function vector some elements
of which are incommensurable and conflict with each other.
This problem aims at obtaining a unique solution known as
the preferentially optimal solution through subjective
preference of DM.

The methods of MOP are generally classified into
throughout and see-and-then approaches. The former will
solve (p.1) straightforwardly while the later attempts to
reveal the trade-off relation first (see) and articulatee the
preference after that (then). In this see stage, every multi-
objective evolutionary algorithm (MOEA; Coello, 2012)

seems to be effective since it can derive Pareto front readily.
However, practical methods for “then” stage are almost
unavailable presently. On the other hand, we developed a
“throughout” method known as MOON? and successfully
applied it to various engineering problems (For example,
Shimizu, Waki & Sakaguchi, 2012).

Here, let me note MOON? needs to identify the value
function of DM beforehand. This modeling will be carried
out with a suitable artificial neural network (NN) to deal
with the non-linearity commonly seen in the value function.
Such NN will be trained based on the training data gathered
by an AHP-like pair-wise comparison (Satty, 1980) on the
DM’s preference. Thus trained NN works with the
reference objective values FF supplied as a half of its inputs.

Once such value function is identified, the original
(p-1) is simply solved as a single-objective problem as
follows.

(p.2) M;ax Vi (f(X)) subjectto xe X

To solve this problem practically and reasonably and then
move on the post-optimal analysis in the same framework,
we propose to apply a certain MOEA in terms of unique



idea described below.

If we notice that objectives Min Vyn(f(x)) and Max
Van (F(X)) always conflict with each other, the following
problem is viewed as a bi-objective problem.

(p-3) Max {Vnn (f(X)), -Vin(f(X))} subject to xeX

Accordingly, we can solve (p.1) from the following simple
procedures.

(1) Apply an appropriate MOEA for (p.3).

(2) Select the solution with the largest value of Vyy as the

preferentially optimal solution of (p.1).

In the application of this MOEA, it is unnecessary to
derive a widely spread distribution of Pareto front. It is
enough to obtain only several candidates. This is also true
for the post-optimal evolution carried out after that. To note
these facts, we modified the algorithm of NSGA-II (Deb,
2000) so that the population size will decrease along with
the evolution. Such algorithm whose pseudo code is given
below is called as down-sizing NSGA-II.

if(gen >o x gener)
{ popsize = S x popsize;
if(popsize < minpop) popsize = minpop;
1

where o and S are positive parameters (<1). And gen, gener,
popsize and minpop represent current generation, its total
one, population size and desired final size, respectively.

2.3 Post-optimal Analysis by Elite-induced MOEA
and Summary of the Proposed Procedure

As mentioned already, we need to concern with
various uncertain factors/errors for practical decision
making. To cope with this by noting the specific properties
of MOP, we propose a post-optimal evolution around the
preferentially optimal solution. For this purpose, our elite
induced multi-objective evolutionary algorithm (El-
MOEA; Shimizu, Takayama & Ohishi, 2012) is
conveniently available.

The principle behind the idea of EI-MOEA is just
simple and straightforward from the original MOEA.
Actually, the algorithm is composed of the following two
parts:

(1) Selection of some elite solutions under a certain
allocation rule.

(2) Application of MOEA by incorporating the elite
solutions into a set of random initial solutions.

We can expect each elite solution will induce the
Pareto front in the direction toward its preexisting region.
By adjusting the allocation rule (number of elites and their
locations), DM is able to manipulate the final solutions so
that the Pareto front will spread on a specific limited region.
Moreover, due to the existence of the elites, selection
pressure that might contribute to the accuracy and

convergence speed is always kept at high level. This
makes the algorithm powerful and computation load
smaller. By the way, in the case of post-optimal analysis
on MOP, it is reasonable to focus just on the preferentially
optimal solution.

In summary, the proposed procedures that follow the
framework shown in Fig.1 are listed below. It is also
helpful for readers to refer to the case study in Section 3.

Step 1: Generate several trial solutions in the objective-
space surrounded by the ideal and nadir solutions.

Step 2: Extract the preferences of the DM through pairwise
comparison between every pair of the trial solutions.

Step 3: Train the neural network using the preference
information obtained from the above responses. This
trained network serves as a value function Vyy by
properly selecting the reference objective values F*.

Step 4: Solve the original MOP (p.1) as the single-objective
problem (p. 2) by the proposed idea.

Step 4.1: Apply the down-sizing NSGA-I1I to (p.3).

Step 4.2: Sort the resulting objective values in descending
order and select the top as the preferentially optimal
solution.

Step 5: Select the elite solutions from the preferentially
optimal solution and its neighbors.

Step 6: Apply EI-MOEA (post-optimal evolution by the
down-sizing NSGA-II) to derive the several candidates
for the final decision.

Step 7: Move on the post-optimal analysis over the selected
candidates.

Actually, Step 7 is carried out through reviewing them in
decision variable space besides in the objective space and
conditions of constraints as well. This must become
comprehensive one including concerns not considered as
pure mathematical procedures.

3. CASE STUDY
3.1 Problem Statement

In car industries, weight saving has been a major
interest toward energy/material conservations. On the other
hand, motorization in developing countries promotes mass-
customization to meet a variety of customer demands while
reducing development and production costs. To pursue
these goals in a lean and agile manner, it is required to
provide some method for the parts design commonly
available among the multiple car structures. In real-world
car design, however, it is widely known these two goals
conflict with each other.

Noticing those facts, we convinced our idea is just
amenable for this resolution and can demonstrate it through
a benchmark problem released recently. Though the outline
of this problem is described below, more information is
available from the literature (Kohira et al., 2017) and web



site (URL, 2017)

Objective functions:
(1) Minimize the total weight of three designs (denoted as
CDW, SUV, C5H hereinafter)
(2) Maximize the number of common thickness parts over
the three designs

Here, in the first objective, each weight is modeled by
the multiple regression equation after normalizing it by the
respective standard. In the second, if the difference of plate
thickness at the corresponding part is less than 0.05 over
the all designs, it is admitted as commonly available.

Constraints: These conditions refer to the popular
requirements on car structure design such as rigidity of
vehicle body, low frequency vibration and collision
performance. They are given totally as 42 inequality
equations (14 per each design). Actually, they are the
response surface models described by the radial basis
function with 1158, 1215 and 1271 centers for each,
respectively. Another 12 inequality equations (4 per each)
give the size relations among the decision variables.
Besides these, each decision variable has a box condition
(upper and lower bounds).

Decision variables: These are composed of plate
thicknesses of parts over three designs and come to totally
222 (74 per each).

After all, it is a large complicated bi-objective
optimization problem composed of 222 decision variables
and 54 constraints described as the regression and the
response surface models. Accordingly, it should be
emphasized the resulting problem becomes extremely
tough in optimization.

3.2 Procedures to Obtain Preferentially Optimal
Solution

Since subjective information on the DM’s preference
is essential for MOP, we assume a virtual DM whose value
function is given as Eq.(1) for convenience.

b
N nad \!
U(f(x)):{Zwk[mJ } )

k kT Tk
where F'®, F™ and w, denote a utopia, a nadir and a
weight representing relative importance of k-th objective,
respectively. And, t is a norm parameter of the value
function. Hence, U(f(x)) represents the ratio of relative
attainability from the utopia and takes 1.0 for the utopia
and 0.0 for the nadir. In terms of this value function, we
can consistently decide any reply of the virtual DM on
preference.

Now, we are ready for deriving the preferentially optimal

solution through the earlier part of the proposed approach.
In Step 1, we set references (utopia and nadir) and 4 trials

as shown in the margin of Table 1. The result of Step 2 for
the virtual DM (w; = 0.3, w, =0.7, t=1 in Eq.(1)) is shown
as a pair comparison matrix whose element a; denotes the
converted value from the linguistic reply on preference of
F'over F. That is, if F'is “equally” preferable to F, a;=1,
if “moderately” a; =3, if “strongly”, a; =5, Iif
“demonstrably”, a; =7 and if “extremely”, a; =9. To
reduce the response load, relation a;; = 1/a; is assumed as
AHP. In Step 3, train NN (numbers of node for input {F',
F'} = 2N = 4, hidden = 10 and output a; = 1) using the
preference data imbedded in Table 1. Thus trained NN is
available as the value function Vyy by selecting the
reference at F* = (0.25, 0.25). Since so far procedures are a
part of MOON?, refer to the original reference (Shimizu
and Kawada, 2002) more in detail.

Now, in Step 4, first, solve (p.3) by the down-sizing
NSGA-II under the conditions such as popsize=300,
gener=1500, «=0.4, = 0.98, minpop = 0.2 x popsize.
Moreover, tuning parameters for crossover distribution
index, cross-over probability, mutation distribution index
and mutation probability are set at 10.0, 0.75, 50.0, 0.125,
respectively and selection strategy obeys tournament rule.
Then, we obtained the preferentially optimal solution such
as Vyn= 032304 at (fy, f,) = (39, 2.922245) by 237172 total
evaluations. In this computation, it took 11h 16m working
time via a personal computer like Toshiba KIRA (Intel®
Core™ i5-420U CPU@1.6GHz, Ram 8GB).

Table 1 Pair comparison matrix from Eq.(1) and objective
values of reference and 4 trial (F* - F*) solutions

Futp Fnad Fl FZ F3 F4
Fur 1 9 4 5 3 8
Frad 1 1/9 1 1/6 1/5 17 1/2
= 1/4 6 1 3 1 5
F2 1/5 5 1/3 1 1/3 3
F 1/3 7 1 3 1 6
F* 1/8 2 1/5 1/3 1/6 1

FY®=(70, 2.0), F™9=(0, 4.0), F'=(68, 2.932), F*=(55,
3.362), F°=(47, 2.538), F,=(30, 3.938)

3.3 Comparison of Results by Post-optimal Evolution

In this subsection, we show the results of the post-
optimal evolution taken place in the later part, i.e., Step 5 &
6. In Step 5, we choose 6 elite solutions that correspond to
10% of the population size. They are composed of the
tripled preferentially optimal solution and other 3 neighbor
solutions around it.

In Step 6, letting the initial and final population sizes as
60 and 20, respectively, we applied the down-sizing
NSGA-II in the elite induced mode. By 100 generations
with total 40420 evaluations, we derived several candidate
solutions supplied to the post-optimal analysis.

So far results are shown in Fig.2 with the other results
for comparison. They are illustrated together on the counter



map of the present value function, i.e., Eq.(1). Thereat,
“Initial design” and “Isight Optimization” denote the
results by the actual (human) engineers and the commercial
software named “Isight”, respectively. They are reported
from the car company that served the benchmark problem.
On the other hand, “MOON?2 (before optimal)” refers to the
proposed idea (result at Step 4). Meanwhile, “postopt-
MOON?2” describes the Pareto front obtained following the
post-optimal evolution by EI-NSGA-II (result at Step 5 &
6). Moreover, for reference, the Pareto front obtained by
the ordinal NSGA-II with the condition such as population
size=300, generation=1000 and evaluation number=300000
is shown as “NSGA-I1”.

Comparing “MOON2” with “Initial design”, we know
the former results apparently outperform the later.
Moreover, though “postopt-MOON2” aims at deriving a
local Parent front just around “MOON?2”, its distribution is
better than the approaches obtained from “Isight” and
“NSGA-II” that aim at global distribution. Particularly
speaking, we can claim it is very convenient for every user
since major knowledge to have here is just about NSGA-II.

3.4 A Few Examples of Post-optimal Analysis

The post-optimal analysis in Step 7 was taken place
through reviewing both “MOON2” and “postopt-MOON2”
more in detail. For example, concerns should be extended
to the decision variable space and the conditions of
constraints. This must become comprehensive one
including the dealings impossible as pure mathematical
approaches. Presently, though the common thickness parts
between two designs are ignored at first and concern on the
tightness of the constraints is hard to involve into the
problem formulation, we might make a better final decision
by taking those factors into account.

To work with this concern, we selected the top five
solutions having greater Vyy value as the candidates since
they spread sparsely with each other. As shown in Table 2,
they all outperformed “MOON2” (humber in [ ] denotes the
order of V). This means the post-optimal evolution is also
useful for improving the prior solution. Now, we compare
the common thickness parts over two designs among the
candidates and “MOON2”. Then, second and third place
Candidate #1 and #3 realize greater numbers (12) than the
first place Candidate #2 (10) and “MOON2” (10) though
they are a bit inferior to Candidate #2 regarding Vyn.

On the other hand, in Table 3, we compared the
tightness of the constraints gi(x) > 0 (i=1,...,54). There,
“Tight” column denotes the number of tight constraints
(9i(X)<0.05) and the remaining columns statistics of the
gi(x) value. Generally, the smaller this value is, the more
robust it is against uncertainties and/or changes of
situations due to the larger allowance till the boundary.
Among the candidates, the number of tight constraints of
Candidate #1 is smallest and the other statistics (Max,
Average and Variance) are well balanced.

Considering those facts that are hard to discuss in the
process of the prior optimization, Candidate #1 has a high
potential to be selected as the best decision after this post-
optimal analysis. Moreover, the final decision thus made
could be far superior to the human decision made
empirically (“Initial design” shown in Fig.2). Through
those discussions, we can definitely claim the significance
of the proposed approach.

4. CONCLUSION

To resolve many difficult problems incidental to
modern technologies, multi-objective optimization has been
widely applied so far. In this study, we focused our
attention on car industries and engaged in solving a
practical bi-objective optimization problem associated with
energy conservation and mass-customization. Since the
resulting problem becomes extremely tough and requires us
computationally efficient method, we have proposed a
unique application of MOEA and developed a method
incorporated with our multi-objective optimization method
known as MOON? and a new method named downsizing
NSGA-II. Moreover, to enhance its usefulness in practical
engineering tasks, we have engaged in the post-optimal
analysis associated with our elite-induced MOEA (ElI-
NSGA-II) by noticing various uncertainties and/or errors.

In numerical experiments, we have shown the
proposed procedure can derive the prior solution efficiently
and move adaptively on the post-optimal analysis in the
same framework. The advantages of the proposed idea are
verified in numerical experiments through comparison with
the other studies. Finally, we claim the proposed framework
makes multi-objective optimization more promising tool
toward recent qualified and manifold decision making.
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Table 2 Comparison of common thickness parts over two
designs among the candidates and “MOON2”

Common thickness humber

Candidate (]}fl’\‘g) — CSV(\)/Ut O(ESW SOV
/SUV | /C5H | /C5H

#1 [3]* (2.8039?,’%% 12 4 6 2
#2 [19] (2g63§3207§ 10 3 4 3
#3 [2] (286%?03567) 12 4 4 4
#41" |, g9353%483) 9 2 5 2
#5 [5"] (285%2,%05% 16 3 8 5
M (2.902322,%%‘; 10 8 ! 0

* Order as of the magnitude of Vyy
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Fig.2 Comparison with other methods: “MOON?2 (before optimal)” outperforms the empirical “Initial design”. Moreover,
“postopt-MOONZ2” can derive several solutions better than “MOON2 (before optimal)”. It also outperforms the ordinal
NSGA-II and commercial software “Isight Optimization™ as the quality of Pareto front.

Table 3 Feature of the candidates on the tightness of constraints (number in [ ] denotes the order of Vyy value)

Candidate Tight number Max Average Variance
Total | CDW | SUV | C5H | CDW | SUV C5H CDW | Suv C5H CDW | Suv C5H
#1 [3"] 19 6 7 6| 0418 | 0.379 | 0.372 | 0.106 | 0.108 | 0.119 | 0.013 | 0.014 | 0.012
#2 [17] 24 10 6 8| 0.418 | 0.327 | 0.391 | 0.098 | 0.096 | 0.107 | 0.014 | 0.009 | 0.014
#3 [2"] 23 10 6 7| 0.424 | 0.332 | 0.391 | 0.097 | 0.095 | 0.107 | 0.014 | 0.009 | 0.014
#4 [4™ 20 9 6 51| 0.410 | 0.321 | 0.399 | 0.101 | 0.100 | 0.117 | 0.013 | 0.010 | 0.013
#5 [5™] 25 10 7 8| 0.430 | 0.291 | 0.369 | 0.097 | 0.087 | 0.099 | 0.013 | 0.008 | 0.011
MOON2 [6™] 18 7 6 51| 0.349 | 0.355 | 0.390 | 0.099 | 0.108 | 0.121 | 0.009 | 0.011 | 0.012
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